KI in der Krebsforschung: Unterstützung über einzelne Arbeitsschritte hinaus
Bereits heute unterstützen KI und Deep Learning Forschende in zahlreichen Bereichen. Bislang konnten diese Modelle allerdings nur spezifische Aufgaben lösen, wofür sie genaue Vorgaben und Anleitung durch Wissenschaftler:innen benötigen. Biomedizinische Forschung wie zum Beispiel die Entwicklung neuartiger Krebstherapien beinhaltet meist komplexe und mehrstufige Arbeitsschritte. Dazu gehören die Recherche, Planung und Durchführung von Experimenten, gefolgt von Auswertung und Interpretation der Daten. KI konnte hier bisher nur bei einzelnen Schritten wie etwa in der Datenanalyse oder bei der Modellierung helfen. Die Forschenden beschreiben in ihrer Veröffentlichung in der Fachzeitschrift „Nature Cancer“, wie diese Weiterentwicklungen die wissenschaftliche Arbeit in der Krebsforschung in der nahen Zukunft verändern werden.
Beschleunigung der Krebsforschung durch LLMs
Autonome KI-Modelle basierend auf großen Sprachmodellen (Large Language Models – LLMs), die selbständig lernen und reflektieren, könnten in Zukunft nahtlos mit Forschenden zusammenarbeiten. Dadurch ließe sich der gesamte Entwicklungsprozess in der Krebsforschung von der Literaturrecherche, der Projektplanung über die Modellierung möglicher Medikamente bis hin zum Design von klinischen Studien beschleunigen.
Lesen Sie mehr zu diesem Thema:
Apps und DiGA in der Onkologie
Erschienen am 16.12.2024 • Verschreibungspflichtige Gesundheits-Apps werden als digitale Gesundheitsanwendungen. Welche es im Bereich Onkologie-Hämatologie gibt, lesen Sie hier!
Erschienen am 16.12.2024 • Verschreibungspflichtige Gesundheits-Apps werden als digitale Gesundheitsanwendungen. Welche es im Bereich...
© Jennifer - stock.adobe.com
Komplexe Arbeitsabläufe vereinfachen
Die Modelle vereinfachen zeitaufwändige biomedizinische Arbeitsabläufe, indem sie mehrstufige Aufgaben automatisieren und eine effiziente Zusammenarbeit zwischen spezialisierten KI-Systemen ermöglichen. Die Identifizierung neuer Ziele für Krebsmedikamente beinhaltet eine umfangreiche Literaturrecherche. Aufwendige Modellierungen der 3D-Struktur eines Eiweißes oder eines Medikaments waren bislang häufig Gegenstand einer gesamten Doktorarbeit. Neue KI-Agenten mit Internetzugriff hingegen können hunderte Publikationen lesen sowie zahlreiche verschiedene 3D-Strukturen innerhalb weniger Minuten untersuchen.
Mehr Zeit für kreative Ideen und strategische Entscheidungen
Auch wenn die Systeme zunehmend autonom arbeiten könnten, wird die Überwachung durch menschliche Forscher:innen bestehen bleiben. Sie leiten die Systeme an und überprüfen die einzelnen Schritte und Ergebnisse. Ziel ist es, dass die Systeme detaillierte, zeitaufwändige Routinearbeiten automatisieren. Dadurch bleibt den Wissenschaftler:innen mehr Zeit für kreative neue Ideen und strategische Entscheidungen.
„Diese neuen Systeme werden die biomedizinische Forschung maßgeblich verändern und beschleunigen. Zugleich müssen sich Wissenschaftlerinnen und Wissenschaftler auch der ethischen und sicherheitsrelevanten Konsequenzen bewusst sein. Es ist unsere Aufgabe, KI verantwortungsvoll einzusetzen und die dafür erforderlichen Rahmenbedingungen zu definieren. Dann sind diese KI-Systeme eine wertvolle Ergänzung und Unterstützung, um die Forschung voranzubringen, Krankheiten besser zu verstehen und passende Therapieansätze finden zu können“, sagt Prof. Jakob N. Kather, Professor für Klinische Künstliche Intelligenz an der TU Dresden.