Dienstag, 3. Dezember 2024
Navigation öffnen
Anzeige:
Wefra Programatic
 
Medizin

Präzise Unterscheidung von Hirntumoren mit Deep Learning und Radiomics

Präzise Unterscheidung von Hirntumoren mit Deep Learning und Radiomics
© merydolla – stock.adobe.com
Die Unterscheidung von Primärtumoren und Metastasen kann bei Hirntumoren rasch und präzise mittels Radiomics und Deep Learning-Algorithmen erfolgen. Dies ist die Kernaussage einer Studie der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL Krems), die jetzt in Metabolites veröffentlicht wurde (1). Sie zeigt, dass Magnetresonanz-basierte radiologische Daten des O2-Stoffwechsels von Tumoren eine hervorragende Grundlage für die Unterscheidung mit Hilfe von neuronalen Netzwerken bieten. Diese Kombination von „oxygen metabolic radiomics“ mit Analysen durch spezielle Künstliche Intelligenz war dabei den Auswertungen durch menschliche Expert:innen in allen wesentlichen Kriterien deutlich überlegen. Dieses ist umso beeindruckender, als wesentliche Sauerstoffwerte zwischen den Tumorarten nicht maßgeblich voneinander abwichen – und neuronale Netzwerke auf deren Grundlage dennoch eindeutige Unterscheidungen vornehmen konnten.
Anzeige:
Wefra Programatic
 

Differenzierung von Glioblastom und Hirnmetastasen wichtig für Therapie

Glioblastom und Hirnmetastasen sind die häufigsten Arten von Hirntumoren bei Erwachsenen. Ihre Behandlung muss grundsätzlich unterschiedlich erfolgen, und eine rasche und klare Diagnose beeinflusst daher den klinischen Erfolg. Tatsächlich jedoch ist ihre Differenzierung schwierig, da sie sich in klassischen Magnetresonanz (MR)-Aufnahmen kaum unterscheiden.

Künstliche Intelligenz bei physio-metabolischer MR

Anders bei sogenannter physio-metabolischer MR, die Stoffwechselvorgänge im Tumorgewebe erfassen kann. Diese jedoch liefert so große Datenmengen, dass ein Einsatz in der Routinediagnostik Auswertungen durch Künstliche Intelligenz erforderlich machen würde. Deren Zuverlässigkeit demonstriert nun ein Team um Prof. Andreas Stadlbauer von der KL Krems anhand eines eigens entwickelten Deep Learning Algorithmus und MR-basierten Daten zum O2-Stoffwechsel der beiden Tumorarten.

Unterscheidungen von Tumorarten – KI vs. Mensch

„Tatsächlich gelang es mit unserem Ansatz, bessere Unterscheidungen der Tumorarten zu erreichen als menschliche Expert:innen das im Vergleich erzielen konnten“, fasst Prof. Stadlbauer die Ergebnisse der internationalen Studie zusammen. Der Medizinphysiker am Zentralinstitut für medizinische Radiologie-Diagnostik des Universitätsklinikums St. Pölten, Lehr- und Forschungsstandort der KL Krems, führt dazu weiter aus: „In allen wichtigen Unterscheidungskriterien wie Genauigkeit, Sensitivität, Spezifität und Präzision war die Auswertung der MR-basierten Sauerstoffdaten durch unser spezielles neuronales Netzwerk den Radiolog:innen überlegen. Auch bei statistischen Auswertungen wie den F-Werten und dem AUROC war diese Methode besser als die menschlichen Auswertungen.“

Convolutional Neural Network zur Analyse von MR-basierten Sauerstoffwerten

Grundlage der Messungen waren dabei ein vom Team eigens entwickeltes sogenanntes „Convolutional Neural Network“ (CNN). Dies ist eine Sonderform eines künstlichen neuronalen Netzes, das speziell für maschinelles Lernen und die Verarbeitung von Bild- oder Audiodaten konzipiert wird und Teile biologischer Vorgänge nachempfindet. Im Rahmen der Studie wurde das CNN dann mittels Tumordaten der umfangreichen Datenbank am Universitätsklinikum St. Pölten trainiert und anschließend zur Analyse von MR-basierten Sauerstoffwerten von neuen Patient:innen eingesetzt.

Klare Unterscheidung von Glioblastom und Hirnmetastasen durch die KI

Die Sauerstoffwerte, die dabei im Rahmen der Studie erhoben wurden, waren unter anderem der zerebrale Sauerstoffumsatz (CMRO2) sowie die mitochondrialen Sauerstoffsättigung (mitoPO2), die Auskunft über den zellulären Energieumsatz gibt. „Interessanterweise“, so Prof. Stadlbauer, „wichen weder der Mittelwert noch der Median dieser beiden Parameter zwischen den beiden Tumorarten wesentlich voneinander ab – aber dennoch gelang unserem CNN eine klare Differenzierung beider Tumorarten.“

Einsatz von CNN in der klinischen Praxis geplant

Die Studie zeigt das große diagnostische Potenzial, das in der Kombination beider Methoden steckt. Tatsächlich aber kommen radiologische Daten des O2-Stoffwechsels im klinischen Alltag noch erst sehr begrenzt zum Einsatz. Prof. Stadlbauer und sein Team möchten dies ändern und planen daher bereits eine umfangreichere Studie, die die jetzt erhobenen Daten nicht nur bestätigen soll, sondern auch Methoden einsetzen wird, die noch enger an der klinischen Routine sind. Dazu Prof. Stadlbauer: „In der jetzigen Studie waren zur Vorbereitung der Datenanalyse noch einige manuelle Schritte notwendig. Für die klinische Routine ist das zu zeitaufwendig und limitiert auch die Vergleichbarkeit zwischen verschiedenen Institutionen. Wir planen daher den Einsatz von CNN auch in dieser Phase.“

Quelle: Karl Landsteiner Privatuniversität für Gesundheitswissenschaften

Literatur:

(1) A. Stadlbauer et al. Differentiation of Glioblastoma and Brain Metastases by MRI-Based Oxygen Metabolomic Radiomics and Deep Learning. Metabolites 2022, 12 (12), 1264.


Sie können folgenden Inhalt einem Kollegen empfehlen:

"Präzise Unterscheidung von Hirntumoren mit Deep Learning und Radiomics"

Bitte tragen Sie auch die Absenderdaten vollständig ein, damit Sie der Empfänger erkennen kann.

Die mit (*) gekennzeichneten Angaben müssen eingetragen werden!

Die Verwendung Ihrer Daten für den Newsletter können Sie jederzeit mit Wirkung für die Zukunft gegenüber der MedtriX GmbH - Geschäftsbereich rs media widersprechen ohne dass Kosten entstehen. Nutzen Sie hierfür etwaige Abmeldelinks im Newsletter oder schreiben Sie eine E-Mail an: rgb-info[at]medtrix.group.